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The effect of turbulence on an applied magnetic field is considered in the case 
when the magnetic Reynolds number R, is large compared with unity but small 
compared with the ordinary Reynolds number R of the turbulence. When the 
applied field is sufficiently weak, it is argued that its effect on the velocity field 
is negligible. The equation for the field is then linear and its spectrum may be 
obtained throughout the equlibrium range of wave-numbers. It appears that the 
spectrum increases as kf up to a wave-number k, marking the threshold of con- 
duction effects, and falls off as k+ beyond k,. The net effect of the turbulence is 
expressed in terms of an eddy conductivity equal to R;-% times the electrical 
conductivity of the fluid. The effect of magnetic forces when these are not 
negligible is also tentatively considered. 

1. Introduction 
The behaviour of a magnetic field in a turbulent conducting fluid is largely 

determined by the relative magnitudes of the Reynolds number R and the mag- 
netic Reynolds number R, of the turbulence. These may be defined in terms of 
the root-mean-square velocity u' and a length L characteristic both of the energy- 
containing eddies and, i t  may be supposed, of any large-scale magnetic field 
disturbance (or magnetic eddies) that may be present. Thus 

R = u'L/v, (1.1) 

and R,, = 4 7 ~ p a ~ ' L  = u'L/h, (1.2) 

where v is the kinematic viscosity of the fluid, and ,u, 5 and h are its permeability, 
conductivity and magnetic diffusivity, respectively. Throughout this work, we 
shall suppose that R is a t  least five or six orders of magnitude greater than unity. 

R (i.e. h < v) ,  any weak random magnetic field is intensified by 
the action of the turbulence; indeed its mean-square value increases exponen- 
tially until magnetic stresses react back upon the velocity field (Batchelor 1950). 
At the other extreme, when R, < 1, i.e. in a weakly conducting fluid, conduction 
effects are dominant a t  all length scales, so that any random field will rapidly 
decay to zero. Steady conditions are possible, however, if a large-scale magnetic 
field is maintained by externally applied electromotive forces. The turbulence 
will then give rise to small fluctuations in this field whose spectral properties will 
be closely related to the turbulent spectrum and whose level will be controlled by 
the small conductivity of the medium. Golitsyn (1960) has recently analysed 

When R, 
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the particular case of turbulence of a weakly conducting fluid in a uniform mag- 
netic field, and has obtained the anisotropic spectrum of the small-scale field 
fluctuations that are induced. 

There remains the possibility, which we investigate in this paper, that 

This is the case of moderate conductivity which may well arise in problems of 
astrophysical and geophysical interest. The condition implies that h 9 v, so 
that, according to Batchelor, random magnetic field perturbations decay to zero 
in the absence of electromotive forces. The reason for this is that conduction 
effects become important at a length scale 1, large compared with the length scale 
I ,  of the smallest turbulent eddies at which viscous dissipation begins to pre- 
dominate. The lines of force of any magnetic field disturbance on a length scale 
larger than 1, are, to a good approximation, carried with the fluid so that initial 
intensification may result. But such a field is presumably distorted by the smallest 
velocity eddies and broken up into components much smaller than 1, which must 
ultimately decay to zero through the predominant conduction effect. Again i t  
appears that a steady spectrum can be maintained only if externally applied 
electromotive forces are present. We shall suppose that these generate, on the 
scale L, a magnetic field H,(r) which is distorted by the turbulence, intensifica- 
tion through the stretching mechanism occurring a t  length scales larger than 
l,, with conductive decay at length scales smaller than 1,. 

It will be possible to neglect the back-reaction of the magnetic field on the 
velocity field provided the mean magnetic energy generated is small compared 
with the kinetic energy of those eddies whose scale is small compared with L, itself 
a factor Ri less than the total kinetic energy of the turbulence (see $4). Since 
the equation for the magnetic field is linear, the magnetic energy will be propor- 
tional to @ (and probably larger than %: in view of the initial intensification). 
We shall therefore suppose that g; is sufficiently small for us to neglect the back- 
reaction, although we may later examine, a t  least qualitatively, departures from 
this condition. 

Under the conditions outlined above, the statistical properties of the small- 
scale motion, characterized by wave-numbers k large compared with l /L,  are 
according to Kolmogorov’s theory, steady, isotropic, and determined solely by 
the parameters u and E ,  the rate of dissipation of kinetic energy per unit mass. The 
justification for these claims is that R is large compared with unity. Since R, 
is likewise large compared with unity, the statistical properties of the small-scale 
magnetic field are, to the same approximation, steady and isotropic, though they 
may depend upon certain field parameters (e.g. A)  in addition to v and B .  

Aproblem closely related to that under consideration was studied by Batchelor, 
Howells & Townsend (1959) who obtained the spectrum, at high wave-numbers, 
of a dynamically passive scalar solute 8 under the combined action of convection 
and diffusion at small Prandtl number. It is interesting to note that the magnetic- 
field spectrum that we shall obtain in the following sections is identical with 
the spectrum of VB, although the underlying kinematical reasoning is not the 
aame in the two cases, since H and V8  do not satisfy the same equations. 
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It is perhaps worth stressing a t  the outset that we are assuming that the level 
of the magnetic spectrum can be controlled by ohmic conduction, even though 
this predominates only a t  higher wave-numbers, simply because the intensifica- 
tion through stretching of lines of force is associated with a decrease of scale, 
i.e. the magnetic energy may be increased but is necessarily directed towards 
the ohmic sink at high wave-numbers at the same time. Some other authors 
(e.g. Biermann & Schluter 1951) have taken the view that the increase of field 
intensity at low wave-numbers may continue until equipartition with the kinetic 
energy at the same length scale is established. However, the results that we shall 
derive are entirely consistent with our assumption which we therefore retain 
with some confidence. 

It is easy to see why ohmic conduction does not necessarily control the magnetic 
spectrum level in the case of high conductivity when h < Y. For in this case, the 
conduction length scale 1, is much smaller than the viscous length scale Z,, so that 
the magnetic field cannot be broken up by turbulent eddies into small components 
at which conduction dominates. Indeed it can only be broken down into loops 
of size O(ZJ at which the small-scale straining motion is very efficient at  intensi- 
fying the field. But to pursue this argument is not the purpose of the present 
paper. 

2. The magnetic energy spectrum in the range l/L < k < (€/A3)* 

to be, in order of magnitude, 

Similarly the conduction cut-off kc, which is small compared with k, and cannot 
therefore depend on Y, can depend only on 8 and h and is therefore given by 

(2.2) 

The viscous cut-off wave-number k,, depending only on E and v,  is well known 

k, = lgl = (E/Y~)*. (2.1) 

k, = Z;1 = (€/A3)%. 

We shall suppose that L-4 < k$ < k:, (2.3) 

so that we may consider separately two subranges of the inertial range of wave- 
numbers, 

and (2.4) 

recognizing that if either of the inequalities of (2.3) fails to obtain, the correspond- 
ing subrange simply shrinks to zero. Since E is given by the semi-empirical 

(2.5) 
relation 

the condition (2.3) is tantamount to the condition 

subrange A :  1/L < k < k, subrange B:  ko < k < k,, 

E = U y G ,  

1 < Ri RB, (2.6) 

a more exacting requirement than we anticipated in (1.3). In  subrange A the 
magnetic energy spectrum is in a state of dynamic balance under the influence 
of the convection and consequent stretching of lines of force alone; we shall 
proceed to determine its form in this section leaving until $ 3  the study of sub- 
range B in which conduction plays an important part. 

40-2 
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Let us start from the observation, first made by Batchelor, that in a fluid 
for which h = v, the equations for the rates of change of magnetic field H and 
vorticity w = V A u are formally identical, namely 

aH/at + u . VH = H . VU + hV2H, (2.7) 

and awpt + U. vw = vu +two. (2.8) 

Thus, if H = Co at any time, where C is a suitably small dimensional constant, 
so that the neglect of the Lorentz-force term in (2.8) is justified, then H will 
remain equal to Cw at all subsequent times. In  this case therefore all statistical 
properties of H and o will be identical, and in particular their spectra will have 
the same dependence on wave-numbers for k % L-l. I f  the turbulence arises 
from some instability of a large-scale flow whose vorticity coincides with an 
applied magnetic field, then it is clear that the small-scale vorticity and magnetic 
field that are generated must also coincide. 

Now if it is true that the statistical properties of the small-scale motion and 
field are independent of the large-scale specification, then under statistically 
steady conditions, for k 9 L-l, and in a fluid for which h = v, the statistical pro- 
perties of any magnetic-field distribution are presumably the same as those of 
the particular field that coincides with the vorticity field. Hence the spectrum 
I',(k) of H, defined for an isotropic, solenoidal field by the equations 

n 

has the dependence, like the vorticity spectrum, 

I',(k) cc k) for L-l< k < Ic,. (2.10) 

If now the ratio h /v  is increased, so that k, decreasesrelative to k,, the magnetic- 
field spectrum will be modified, but only over that part of wave-number space in 
which conduction effects are relevant, i.e. k > k,. The relation (2.10) is unlikely 
to be altered throughout its stated range, aIthough we might anticipate a fairly 
rapid cut-off for k > k,, due to the rapid smoothing out of small-scale variations 
by conduction. 

Since the foregoing argument may not carry complete conviction, it may be 
as well to supplement it with another which leans less heavily on the analogue 
with vorticity. The following argument employs the vector potential A(r, t )  

V A A  =: H, V.A = 0. (2.11) 
defined by 

It is readily shown, from Maxwell's equations and Ohm's Law that A satisfies 
the equation 

(2.12) 

where q5 is the electrostatic potential. The curl of this equation gives equation 
(2.7) for H. If we now multiply (2.12) scalarly by Ai, average over ensembles, 
and use the property of homogeneity (by which the divergence of any quantity 
vanishes on averaging), we obtain without difficulty 

d,@/dt = - 2A,A, (aui/axj) - 2h(VAJ2. (2.13) 



Amplijication of a magnetic field by  turbulence 62 9 

It is easily shown that the spectrum of A, r , ( k ) ,  defined by a pair of equations 
similar to (2 .9 ) ,  is by virtue of (2 .11)  related to r,(k) by 

r,(k) = m , ( k ) .  (2.14) 

It is reasonable to suppose that r,(k) varies as some power n of k in subrange A .  
We shall prove that if n lies between - 1 and 1, then it necessarily has the value +. 
For in these circumstances, &@ = r,(k) dk is determined largely by values 

of r,(k) in the neighbourhood of k = k,, whereas 4 2  = I',(k) dk is determined 

by values of r,(k) in the neighbourhood of k = L-l since r,(k) by hypothesis 
falls off more rapidly than k-l for k 9 L-l. In  this sense, it  is true to say that the 
wave-number ranges determining A2 and @ do not overlap, provided R, is 
large enough. Let us denote by x the total rate of generation of contributions 
to 2 (or '2-stuff ') including generation by electromotive forces (not repre- 
sented in equation (2 .13 ) )  and by interaction with the turbulence, represented 

- G{A} = - 2 ~ , ~ ~ ( a u ~ / a x ~ )  (2 .15)  
by the term 

of equation (2 .13) .  Under steady conditions, equation (2 .13)  then gives 

/OW 

J O r n  

x = 2h(VAi)'. (2.16) 

Thus, 5-stuff is generated a t  a rate x at wave-numbers of order L-1, and is 
destroyed at a rate x at wave-numbers larger than k,. It is therefore transferred 
at a rate x through the spectrum which is therefore determined in subrange A 
solely by the parameters x and e. The dependence of FA(&) on x must be mere 
proportionality because of the linearity of the equation for A, and dimensional 
analysis now gives r , ( k )  M (x/e*) k-3, so that r,(k) M ( x / d ) k $ .  

Now n cannot be less than - 1 ; for if so, we could apply the above argument to 
both r,(lc) and r,(k), proving that both these spectra have the dependence 
lc-3, contrary to equation (2.14).  Moreover, it is extremely unlikely that n should 
be greater than 1 ;  no physical argument can be found to support such a rapid 
increase with k. Hence we are again led to the result (2 .10) .  

It is interesting to note the resemblance between equation (2.13) and the 
equation for rate of change of z2 derived from equation (2 .7) ,  namely 

d@/dt = G{H} - 2h(VHi)', (2 .17)  

where G{H} = 2Hi Hj(aui/axj).  

The term G{H}, representing the generation of magnetic energy by the turbulence, 
is of vital importance in determining the spectral properties of H. This is because 
considerable vorticity is associated with the wave-number region near kc (since 
k, 9 L-1) in which the magnetic energy is concentrated. The same cannot be 
said of the term - G{A} in relation to the A-spectrum, since there is very little 
vorticity associated with wave numbers of order L-l at which FA(,$) is maximal, 
a comment best expressed by the inequality 

G(A}/G{H) < p/@. (2 .18)  
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3. The magnetic energy spectrum in the range k, < k < k, 
In  this section we shall follow the method of Batchelor et al. (1959) to determine 

the spectrum in subrange B. The Fourier transforms of the fields u and H may 
be defined by the equations 

u(r) = p(k) e-ik-r dk, H(r) = J'q(k) eik*rdk, s (3.1) 

where p(k) and q(k) have the solenoidal property 

k.p(k) = k.q(k) = 0. (3-2) 

The Fourier coefficients p,( k) and pi( k) are related to the kinetic-energy spectrum 
E ( k )  and the magnetic-energy spectrum r(k) (dropping the suffix H )  by the equa- 
tions 

where the star indicates a complex conjugate. 
In  terms of the Fourier coefficients, equation (2.7) may be written 

k;p,(k-k) qj(k')dk' = i k;qi(k-k")pj(k")dk"-Ak2qj(k). (3.4) 
at s s 

In  the integral on the right-hand side, it is expedient to change the variable of 
integration by writing k' = k - k", dk' = -dk". Using the fact that k;qi(k') = 0, 
equation (3.4) becomes 

?!!&) = -i [k;pi(k-k')q,(k)+kipj(k-k')q,(k')]dk'-Ak2q,(k).  (3.5) 

The immediate aim is to convert this equation to one relating r ( k )  and E(k)  
by means of equations (3.3). The result of this manipulation will be found in 
equation (3.10). 

at s 
Let us focus attention on values of k in subrange B, i.e. those satisfying 

k, < k < k,. (3.6) 

The integral in (3.5) is over all wave-number space; but since we expect that 
qj(k') will decrease rapidly as k' increases beyond kc, because of the predominating 
influence of conduction, the integral will be dominated by the contribution from 
the range k' < kc, that is, using (3.6), from values of k' satisfying k' < k, M' 
equivalently 

k' < Ik-k'l. (3.7) 

This argument was given by Batchelor et al., only the first summand of the 
integralin (3.5) appearing in their context. They moreover gave arguments which 
also carry over to the present case to show that the time derivative in (3.5) 
just balances the small contribution to the integral from values of k near k, 
and that both may therefore be neglected. 
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It then follows from (3.5) that 

A2k4qj(k)q7(k) = / / { k / k i  p,(k-k’)p;c*(k- k”)q,(k’)qT(k’’) 

+ k;kk pi(k- k’)pf(k- k )  q;.(k‘) &(k”) 

+ ki ki p j (  k - k ) p: (k - k )  qi ( k )  q; (k”) 

+ ki kk pj( k - k’) 21; (k - k”) qi( k’) @(k’‘)} dk‘ d k .  (3.8) 

This double integral is dominated by contributions from the range for which 
(k’, k“) < ( 1  k - k 1, I k - k”]), and in this range the statistical connexion between 
the p’s and q’s of (3.8) is slight. Hence, for example, 

p,(k-k)p$(k- k”)qj(k’)~~(k’’) + pi(k-k)p$(k- k”) qj(k)qj(k”). 

The orthogonality of the coefficients, 

pi(k - k’) pz( k - k”) = pi(k - k’) p$(k - k )  6(k’ - k”), 

now allows a trivial integration throughout the k-space. Further, since k’ < k, 
andp,(k) decreases slowly compared with q,(k) in the range (3.6), we may replace 
p,(k - k’)p*(k - k’) byp,(k)p$(k), whichmaynow bebroughtoutsidetheintegral. 
These simplifications reduce (3.8) to the form 

A2k4qj(k)q3k) = p*(k)p$(k) jk;kkqj(k’)qf(k)dk 
n 

+ kikkpj(k)pT(k) j-qi(k’) q*(k’) dk’. (3.9) 

Now 
-~ 

aH. 
k ; q j ( k ) q F ( k ) d k ‘ =  Hi‘ = H . 2  = r a H i H j  = 0, by homogeneity. s -  axk 3axk 2 a X k  

Hence the second term of (3.9) vanishes. Also 

by the isotropy of the small-scale magnetic field, and 
- 

/qi(k’)qz(kf)dk’ = H X  = +H?Sik. 

Using these results and equations (3.3), the relation between E(k)  and r ( k )  
follows in the form 

~ 2 k 4 r ( l ~ )  = y q k )  (vH,)2 + g k w ( k )  Hj”. (3.10) 

The interpretation of this equation is as follows. Part of the magnetic energy 
in the wave-number range (k, k + dk) is derived from the simple interaction of 
velocity components of wave-number k with an effectively uniform field gradient 
{(VHj)2]*. This is exactly as for the scalar spectrum, and corresponds to a transfer 
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of magnetic energy down the spectrum. The other contribution to T ( k )  is a direct 
transfer from kinetic energy of wave-number k through the action of velocity 
gradients (i.e. rates of strain) on an effectively uniform field of magnitude 
{Vm. 

Now we may estimate the value of (VHj)2  in terms of @ as follows. 

In  the first integral the integrand is increasing throughout most, if not all, of the 
range; in the second it is decreasing throughout the range. The integrals converge 
at the origin and a t  infinity, respectively. They are therefore determined by the 

FIGURE 1. Wave-number dependence of magnetic energy spectra (on logarithmic male), 
(a) when 1 -g R,,, < R, and ( b )  when R, < 1. The slope is represented by the letter 8. The 
dotted curve in (a) represents the cut-off of the spectrum of the applied magnetic field 
H&). 

value of the integrand at k, and may both be approximated by the expression 

r(k) dk may be 

approximated by &I?(,%,). Hence (VH,)2 M kz@, so that the second term on the 
right of (3.10) is the larger for k g kc. Hence, neglecting the first term, and using 
the Kolmogorov expression for E(k),  valid in the range considered, 

E(lc) w sWQ, (3.11) 

I?@,), neglecting numerical constants. Similarly +@ = s 

we find, for the magnetic spectrum, 

r(k) M @ ~ % h - ~ k - Y  for k, < k < kv. (3.12) 

This spectrum does fall off rapidly compared with the energy spectrum E(k)  
in the same range as we were led to presuppose. 
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It is illuminating to compare this result with the work of Golitsyn (1960) 
who found a similar k* law, modified by an anisotropic factor, for the spectrum 
of small-scale field variations induced by turbulent motion in a uniform applied 
field. He used a perturbation method, supposing that the field fluctuations are 
always small compared with the applied field, a situation that would seem to 
persist only when R, < 1. I n  Golitsyn's case, the lines of force at  any instant 
would be approximately straight with small fluctuations. In  the case R, > 1, 
the lines of force will be randomly oriented, and approximately uniform with 
smalI fluctuations through each region of fluid of dimension I, = (h3/e)4. The 
spectrum of the small-scale fluctuations within each such region could be 
determined by Golitsyn's method, introducing an anisotropic factor for each 
region. When we average over all the regions, the anisotropic factor disappears, 
and we are left with the isotropic law (3.12) that we have already determined by 
an independent method. The magnetic-field spectra in the two cases are sketched 
in figure 1. 

4. Conclusions 

and since the dimensionless constant must be chosen so that 
Since the spectra (2.10) and (3.12) must agree in order of magnitude at  k = k,, 

$F2 = Jm r(k) dk ,  
0 

they may be written in the form 

r(k) = $hFe-*k* (L-l-g k < kc),  (4.2) 

r(k) = $h-2H2~~k1=' (k ,  < k < kv). (4.3) 

It may fairly be supposed that r(k) does not behave too erratically for k < L-l, 
and that it falls off very rapidly for k > kv. 

We may deduce a rough rule for computing the net effect of the turbulence on 
the magnetic field as follows. In  the absence of the turbulence, only the large-scale 
magnetic field distribution H,(r) would be present, with a mean-square value of 
approximately 

= s,"-' r(7c)dk + L-lr(L-1). (4.4) 

If we suppose that the spectral law (4.2) is valid, at least in order of magnitude, 
right up to k = L-l, then, using equations (1.2) and (2.5), equation (4.4) becomes 

indicating the extent to which turbulence at  large magnetic Reynolds number 
increases the mean-square field intensity (provided always that R, < R). 

The extent to which the dissipation of energy by ohmic heating is increased 
may also be readily calculated. Thus if 

D, = ~ ~ ~ ~ - ' k z r ( k ) d i c  + u - 3 r p y  (4.6) 
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is the dissipation in the absence of turbulence and 

is the increased dissipation under turbulent conditions, then 

D = R i  Do. 

This result may be interpreted in terms of an eddy conductivity re, defined so 
that the total dissipation, by analogy with (4.6), is given by 

D = (4npa, ~ 3 ) - 1  r(L-1). 

re = R ; b  = (4npu'L)-b3, 

(4.9) 

(4.10) 

Then evidently a, may be expressed in the equivalent forms 

indicating, first, the strong dependence of re on R,, and secondly, the anomalous 
effect, already noticed for a scalar spectrum, that increase of CT, keeping other 
parameters constant, induces a decrease in re, simply because the conduction 
cut-off k, is raised so that more thorough mixing of the magnetic field is possible. 

As we stated a t  the outset, we have assumed throughout that the mean mag- 
netic energy per unit mass pH2/4np must be small compared with the kinetic 
energy per unit mass of the small-scale motion. By dimensional reasoning, this 
latter quantity is of order of magnitude (BY)*, which, by equations (1.1) and (2.5), 
is of order R-* times &dZ, the total kinetic energy per unit mass, as stated in the 
introduction. Using (4.5), this places the following restriction on the magnitude 

, u I Q ~ ~ ~  -g u'~/R,R*. (4 .11)  

It is not difficult, however, to visualize how our results must be modified if 
this condition is violated. The field, approximately uniform over a regionof 
dimension k;l, will tend to extinguish any eddies of smaller scale whose energy 
it exceeds (cf. the experiments of Murgatroyd 1953). Now the energy per unit 
mass of Fourier components of the motion of wave-number greater than k is 
approximately dk-8. Let us define a wave-number kf by the stipulation that 
the motion consisting of eddies of wave-number greater than k, should have 
approximately the same energy density as the total magnetic field. If  kf kw, 
we have the situation already described wherein the applied field is very weak. At 
the other extreme, if kf < L-l, we have the case of a field strong enough to 
suppress the turbulence completely. I n  the intermediate case, whenl-l g kf < k,, 

pFi4np = sjkr%, (4 .12)  
so that kf is given by 

the effect of the field will be to suppress eddies of wave-numbers large compared 
with kf. If kf > k,, both the kinetic and therefore magnetic energy spectra may 
thus be expected to fall off very rapidly for k > k,. I f  kf < k,, equipartition of 
energy between kinetic and magnetic modes will probably be established at  all 
wave-numbers greater than kf, both spectra falling off rapidly in the range of 
ohmic dissipation, k > kc. These observations are sketched schematically in 
figure 2.  

of Ig, 
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FIGURE 2. Schematic illustration of the possible effect of magnetic stabilizing forces on 
kinetic and magnetic spectra in the two cases: (a) k, > k,, ( b )  k, < k,. 

It is a pleasure to record my thanks to Dr G. K. Batchelor for the stimulating 
discussions that I have enjoyed with him on the subject of this paper. 
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